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Potential Measurements for Selectivity Determinations of
Polycarbonate Membranes Bounded by MgCl, Solutions

L. MARTINEZ and A. F. TEJERINA

DEPARTAMENTO DE TERMOLOGIA
UNIVERSIDAD DE VALLADOLID
VALLADOLID, SPAIN

Abstract

The emf of the cell chloride selective electrode/MgCly(Ny)/membrane/
MgCly(Ny)/chloride selective electrode, containing a polycarbonate membrane,
has been measured at 20, 30, 40, and 50°C. The membranes studied had pore
diameters ranging from 5.0 to 0.03 um, and bounding solutions concentrations
vary from 2 X 107 to 10~ equiv/dm?. Apparent transport numbers of cation and
permselectivities, deduced from emf values, are given. Results show that poly-
carbonate membranes are permselective to Mg?® when the concentration of
bounding solutions is low.

INTRODUCTION

The efficiency with which a membrane transports selectively any
particular ionic species may be inferred (/) by measuring the transport
number of the species in the membrane.

Membrane potentials measured using normal concentrations N, and
N, on either side of the membrane may be used to derive an average
transport number. If reversible electrodes with respect to the Cl™ ion
immersed in two chloride solutions are used, the cation transport
number, £, is derived (2) from

= _Ml‘_ﬂ app
dE, oo F dina (1)

where E, is the emf of the membrane cell, F is the Faraday, a is the mean
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ionic activity of the electrolyte, and v, and v_ are the cation and anion
stoichiometric coefficients, respectively.

The derived transport number value has been called the apparent
transport number because in this type of measurement water transport
has not been taken into account. This apparent value will be close to the
true value when very dilute solutions are used (1).

In order to devise a quantitative measurement of £}?, it is necessary to
bear in mind that (3) it is not technically possible to stir bulk solutions
very vigorously against the surfaces of a thin porous membrane without
exaggerating pore end effects or even pulsing solutions right through the
pores. In order to include the effects of restricted stirring, it is considered
that the membrane is bounded by two Nernst diffusion layers. The
membrane system formed by the membrane and the two diffusion layers
flanking it is simulated (4) by a fictitious membrane. The purpose of this
paper is to study the ionic permselectivity of this membrane system,
denoted ms.

Since in our experiments we have derived apparent transport numbers
by varying the concentration in the two electrode chambers, from Eq. (1)
we have (5):

t°PP(ms) = v,o. F 9E. 2
v, +v_ RT 2] lnal/a2 p.T.ay

where p is the hydrostatic pressure, ¢, and q, are the mean ionic activities
of the solutions of concentrations N, and N, (calculated from the Stokes-
Robinson hydration model (6, 7)), and E, is measured by taking electrode
1 as the reference. 1 (ms) represents some average value of transport
number for the complete junction (the membrane system) between the
two bounding solutions.

Permselectivity of the system membrane P(ms) (which is the measure
of the system membrane selectivity for the counterions over the co-ion)
was then calculated (8) using the relation

£47%(ms) — 1,

P(ms) = =7
+

(3)
where ¢, is the transport number of the cation in the free solution.

EXPERIMENTAL

Six different types of Nuclepore microporous membranes of poly-
carbonate have been used, with pore diameters (catalog data) of 5, 2, 0.8,
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0.4, 0.1, and 0.03 um. We shall denote them by NS5, . .., N0O3, respectively.

The water used in solution (double-distilled, deionized, and deaired by
boiling) had a specific conductivity of the order of 107 Q™' cm™. The
MgCl, (Baker Analyzed Reagent) used had a purity of 99.5%.

The measurement cell (Fig. 1) is formed by the membrane holder and
two symmetrical compartments (R) which contain the solutions at both
sides of the membrane holder. The exposed area of the membrane in the
holder is 7.5 cm®. Each of the compartments R has an internal volume of
700 mL.

Before use, the membrane was immersed for 12 hin a 2X 10* N
solution. In this way the potential difference E, was constant when the
stirring (200 rpm) and the fluid circulation (100 mL/min) from either 5-L
Mariotte bottle R’ was established, while the concentrations N, and N,
were kept constant. In order to check the equilibrium of the hydrostatic
pressure on both sides of the membrane, each half-cell was furnished
with a vertical capillary tube, T. The outputs of the circulation circuit
were adjusted so that the menisci of the two vertical tubes were of equal
height.

The potential difference E, was measured by two ORION-94178 solid-

W

F1G. 1. Schematic representation of measurement system.
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state chloride-selective electrodes, E, connected to a HP-3456A digital
voltmeter, V, coupled to a HP-5150A thermal printer, I, with a timer.

All the measurements have been corrected for electrodes asymmetry.
Three series of measurements were carried out with each of the
membranes and at each temperature:

Series I: N =107, 2X 107 < N, < 1073
Series I1: Ny = 1072, 1073 < Ny, < 1072
SeriesIII: Ny, = 107", 1072 < Ny, < 107!

The temperature control (+0.1°C) was maintained with two water
thermostats, W, having a proportional temperature controller.

RESULTS AND DISCUSSION

The most representative results obtained for E, versus In (N,/N,) are
reported in Figs. 2-4. They show that F. depends on the membrane
structure, the system temperature, and not only on N,/N, ratio, but even
on the concentration level N,. The fitting of E, vs In (a,/a,) is a straight line
for many cases; for others, a satisfactory fitting was found by means of a
second degree equation.

The fitted functions E, = f{In (a,/a,)), corresponding to every mem-
brane, temperature, and series of concentration, are reported in Tables 1-
3. These tables also report the number of experimental points (n) utilized
for every fitting and their standard deviation (o). The cation apparent
transport numbers, £’ (ms), obtained from Eq. (2), are shown. Tables 4, 5,
and 6 show the values of P(ms) for an N, value belonging to concentra-
tion Series I, I1, and III, respectively.

The results of P,(ms) show the cationic selectivity of the polycarbonate
membranes. The cause of this selectivity is presumably the adsorption of
the anions of solution on the pore walls (3).

The behavior of the membrane is closely linked to its structure. The
fixed anions on the pore surface exert an electrostatic influence on the
ions of the electrolyte so that a diffuse electric double-layer is formed in
the pores (9). The effective thickness of the diffuse double-layer strongly
depends on the concentration of the electrolyte. By a change in the pore
size, or by a change in the diffuse electric double-layer thickness, the
membrane properties can change from those of a Donnan-type mem-
brane (the co-ions are completely absent from the pores and only the
cations mediate the electric contact between both solutions), to those of a
permselective membrane (the co-ions penetrate into the pores and the
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FIG. 2. E, (mV) versus In (V;/Ny) at 20°C for different membranes. Nyg, = 1072,

1073 < Noyyp < 1072,
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FiG. 3. E. (mV) versus In (Ny/N,) for the NO8 membrane at different temperatures.
Nisix = 1072, 1073 < Ny, < 1072



13:21 25 January 2011

Downl oaded At:

SELECTIVITY DETERMINATIONS OF MEMBRANES 427

40

35|

30

25

20

15

10

Eg (mV}

Nqfix=10"2
N1fix=10"1

N1fix=103

0.4 0.8 12 1.6 2.0 24  In{Nq/Np)
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TABLE 4
Results Obtained for P(ms) at Different Temperatures. Nyg, = 1073, In (a,/ap) = 0
20°C 30°C 40°C 50°C
NS5 <0.02 <0.02 <0.02 <0.02
N2 <0.02 <0.02 <0.02 <002
NO8 0.05 + 0.02 0.04 + 0.02 0.04 + 0.02 0.04 + 0.02
No4 0.06 + 0.02 0.04 £ 0.02 0.05 + 0.02 0.04 £ 0.02
No1 0.17 + 0.02 0.16 £ 0.02 0.18 £ 0.02 0.16 £ 0.02
NO003 0.62 + 0.02 0.60 £ 0.02 0.58 + 0.02 0.59 + 0.02

membrane acquires the properties of a liquid junction influenced by the
presence of fixed ions on the walls of the pores), and finally, to those of a
liquid junction (the inside of the pore is an electroneutral mixture of
counterions and co-ions, and the membrane has degenerated to a mere
diaphragm with an internal liquid junction). This double-layer model
explains our results:

The selectivity of the membrane systems made up of the membranes NS,
N2, NO8, and NO4 is negligible. This is because the selectivity
determining parameter (ratio of pore radius to Debye length) is very
large. Differences are more significant for lower bounding solution
concentration and for membranes of lower pore size.

The results of P(ms) for NO1 and N003 membrane systems clearly
indicate that those membranes are permselectives for Mg”* cations.
Permselectivity falls with increasing concentration because with an
increase in external electrolyte concentration, more and more co-ions
enter the membrane pores and the membrane thus loses its selectivity.

TABLE S
Results Obtained for P(ms) at Different Temperatures. Nig, = 1072, In (a,/a5) = |
20°C 30°C 40°C 50°C
NS5 <0.02 <0.02 <0.02 <0.02
N2 <0.02 <0.02 <0.02 <0.02
NO8 <0.02 <0.02 <002 <0.02
No4 <0.02 <0.02 <0.02 <0.02
NoO1 0.07 £ 0.02 0.05 + 0.02 006 = 0.02 0.06 + 0.02

NOO3 033 + 0.02 0.33 +£0.02 0.35 £ 0.02 0.35 + 0.02
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TABLE 6
Results Obtained for P(ms) at Different Temperatures. Nyg, = 1074, In (ay/ay) = 1
20°C 30°C 40°C 50°C
NS <0.02 <0.02 <0.02 <0.02
N2 <0.02 <0.02 <0.02 <0.02
NO8 <0.02 <0.02 <0.02 <0.02
No4 <0.02 <0.02 <0.02 <0.02
NoO1 <0.02 <0.02 <0.02 <0.02
NO0O03 0.10 + 0.02 0.09+ 0.2 0.11 £ 0.02 0.10 £ 0.02

The variation of Debye length is not very important from 20 to 50°C (10);

10.

thus, a variation of selectivity when the temperature increases is not
observed due to the influence of experimental errors.
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